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Abstract  
 
In this paper, the new higher order wall boundary conditions are proposed for solving the 
incompressible flows. The square driven cavity flows are simulated by using the variable order 
method of lines with the present wall boundary conditions. The variable order method of lines is 
constructed by the spatial discretization, i.e., the variable order proper convective scheme for 
convective terms and the modified differential quadrature method for diffusive terms, and time 
integration. The 2nd, 4th, 6th, and 8th order solutions are presented and these results show this higher 
order boundary conditions are very promising for the incompressible flow simulations. 
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1. Introduction 
 
Today's incompressible flow simulations based on the finite difference method will be successfully 
applicable to the various practical flows by using DNS, LES and RANS. In the more practical flow 
simulations, however, the enormous computational time and memory are necessary in order to obtain 
the reliable solution. To relax the restriction on the limit of grid resolution, i.e., number of grid points, 
the higher order numerical simulation is one of the means of solving. In the higher order flow 
simulation, the boundary conditions, especially wall boundary conditions, with higher order of spatial 
accuracy are the more important problem. One of boundary treatments is the use of one-side finite 
difference. In this case, the programming is more complicated because the various finite difference 
formulas have to be adopted, and the compatibility condition for the pressure usually is not satisfied.  
       In this paper, the new higher order wall boundary conditions that introduce the virtual grid points 
inside the wall according to the stencil of higher order finite difference approximation, are proposed. 
In the present boundary conditions, the finite difference formulas at the near boundary are the same as 
those at the inner region. The square driven cavity flows are considered and the present higher order 
wall boundary conditions are verified. 

 
2. Computational Method 
 
2.1  Higher order flow solver 
In this paper, we consider the incompressible flows. Then, the incompressible Navier-Stokes equations 
can be written by 
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Higher Order Wall Boundary Conditions 

Equations (1) and (2) denote the continuity equation and the momentum equations. The velocity 
components and the pressure are expressed by ui and p, respectively. Re denotes the Reynolds number 
defined by Re=UL/ν, where ν is the kinematic viscosity. The equations are nondimensionalized by the 
reference length L, the reference velocity U and the reference pressure ρU2. 
      The variable order method of lines [1,2] is adopted for solving the incompressible Navier-Stokes 
equations. In the method of lines approach, the spatial derivatives are discretized by the appropriate 
scheme, so that the partial differential equations (PDEs) in space and time are reduced to the system of 
ordinary differential equations (ODEs) in time. The resulting ODEs are integrated by the Runge-Kutta 
type time integration scheme. 
     In the spatial discretization, the convective terms are approximated by the variable order proper 
convective scheme [3], because of the consistency of the discrete continuity equation, the conservation 
property, and the variable order of spatial accuracy. This scheme is the extension of the proper 
convective scheme proposed by Morinishi [4] to the variable order. The variable order proper 
convective scheme can be described by 
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where M denotes the order of spatial accuracy, and the operators in Eq. (3) are defined by 
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where m'=2m-1. In this scheme, we can obtain the arbitrary order of spatial accuracy by changing 
only one parameter M. The coefficients c  and c  are the weighting parameters and ∆x'l 'm j denotes the 
grid spacing in the xj direction. 
      On the other hand, the diffusive terms are discretized by the modified differential quadrature 
(MDQ) method [5]. In the MDQ method, the spatial derivatives are approximated by the linear 
combination of the appropriate coefficients and the function itself. The second derivative can be 
discretized by 
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The coefficient  is the second derivatives of the function defined by )x("mΦ
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The coefficients of the variable order proper convective scheme, , can be determined automatically 
by using the MDQ coefficients for the first derivatives. For example, these coefficients can be 
determined as follows; 
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c1 = 1 (2nd order) 
c1 = 9/8,  c3= -1/8 (4th order) 

c1 = 150/128,  c3= -25/128,  c5= 3/128 (6th order) 
c1 = 1225/1024,  c3= -245/1024,  c5= 49/1024,  c7= -5/1024 (8th order) 

c1 = 39690/32768,  c3= -8820/32768,  c5= 2268/32768,  c7= -405/32768,  c9= 35/32768 (10th 
order) 

 
      Then the partial differential equations in space and time are reduced to the system of ordinary 
differential equations (ODEs) in time. The resulting ODEs in time are integrated by the appropriate 
time integration scheme, e.g., the Runge-Kutta type scheme. In this paper, the collocated grid system 
which all variables are defined at cell center is adopted. The fractional step technique [6] is used for 
the solution procedure. In the first step, the fractional step velocity ui* is computed by the relation, 
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where Fi denotes the convective and diffusive terms, and γ is the coefficient determined by the time 
integration scheme. The superscript n and * denote the values at t = n∆t and the fractional step values, 
respectively. Equation (10) is solved on the collocated grid points. The computed fractional step 
velocity is interpolated into the staggered locations so that the staggered fractional step velocity, *iu , 
can be obtained. By using Eq. (5), the variable order interpolation is constructed. The staggered 
velocity at next time step is given by the relation, 
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Substituting Eq. (11) into the discrete continuity equation, the pressure equation 
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can be obtained. This pressure equation is solved by the variable order SOR method. Finally, the 
velocity at next time step is computed by 
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      In practice, the higher order time integration scheme, e.g., 3rd or 4th order Runge-Kutta type 
scheme, should be adopted. In this paper, however, the forward Euler time integration scheme (γ = 1) 
is used, because we consider only the steady flow problem. 
 
2.2 Higher order wall boundary conditions 
In the collocated grid system, the wall boundary location is different from the grid point, that is, cell 
center, shown in Fig. 1. Then, in order to estimate the velocities on the virtual grid points inside the 
wall, it is necessary that the interpolated velocities are equivalent to the wall (boundary) velocities.  
      Generally, the interpolation is defined by the linear combination of the simple averages and 
coefficients. 
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By using this relation, the velocity, e.g., u, on the virtual grid point is specified by 
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Then, the interpolated velocity at the wall boundary satisfies. 
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      On the other hand, the first derivative of pressure at the boundary point is necessary to solve the 
pressure equation. The pressure on the virtual boundary point has to be specified by the first 
derivatives of pressure. The first derivative can be estimated by the linear combination of the second 
order finite difference with different grid spacings and coefficients. 
 

,
x
f

c
x
f

i'

'
2/M

1
'

i l

l

l
l δ
δ

∑
=

=
∂
∂

   ,)ff(
x'

1
x
f

2/'x2/'x
ii'

'
ii ll

l

l

l
+− +−=

∆δ
δ

 (18)

 
where ∆xi is the grid spacing in the xi direction. Then, we set that the each second order finite 
difference is equal to the boundary value,  
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so that the global Neumann condition can be satisfied, 
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where Fwall denotes the convective and diffusive terms at the wall boundary. 
      Moreover, in the case computing the second derivative of velocity at the boundary, the velocities 
on half grid location shown in Fig. 2 are necessary. In this paper, these velocities are determined by 
using the global conservation [7]. The global conservation is that the mass conservation has to be 
specified only by the inflow and outflow at the both boundaries, e.g., when we consider the x direction, 
the global conservation can be written by 
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where N is the number of grid points in the x direction. The subscripts 1/2 and N+1/2 denote the left 
and right boundary values, respectively. In the 2nd order of spatial accuracy, the above global 
conservation is satisfied automatically, because of 

 
Fig. 2 Grid points location 
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However, it is not satisfied generally in the higher order of spatial accuracy. For example, the global 
conservation in the 4th order is written by 
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Equation (23) does not satisfy Eq. (21) automatically. Then, in order to coincide Eq. (21) with Eq. (23), 
we need the following relation,  
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Therefore, the velocity components at half grid location inside the wall, u-1/2 and uN+3/2, can be 
estimated. And in order to compute the second derivatives at the boundary by usual centered finite 
difference, the velocity components, u-3/2 and uN+5/2, have to be determined. These can be specified by 
considering the continuity equation at the closest cell inside the wall to the boundary. In the case of 
Fig. 2, the following relation can be obtained from the continuity equation on (0,j). 
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The right hand side of Eq. (25) is known by using the interpolated values. Then, the velocity, u-3/2 , can 
be estimated. Similarly, the higher order wall boundary conditions than the 4th order of spatial 
accuracy can be formulated. 
 
3. Computational Results 
 
In this paper, the square driven cavity flow problem is considered. The computational conditions are 
that the number of grid points is 41x41 (uniform grid), Reynolds number Re=1000 and 5000, and the 
convergence criteria is L2-residual<10-6 for the Navier-Stokes and pressure equations.  

(a) 2nd order solution        (b) 4th order solution        (c) 6th order solution         (d) 8th order solution 
 

Fig. 3. Pressure coefficient distributions (Re=1000) 
 
 

 

 

  Fig. 4.  Velocity profiles along the center lines 
             (Re=1000, 41x41 grid points) 
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      Fig. 5. Velocity profiles near the boundaries 
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     Figures 3 and 4 show the pressure coefficient distributions and the velocity profiles along the center 
lines with the Reynolds number Re=1000 and, the 2nd, 4th, 6th, and 8th order of spatial accuracy, 
respectively. The pressure coefficient is defined by 
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where p0 is the pressure at center of bottom cavity wall and U denotes the moving wall velocity. In Fig. 
4, the cross symbol denotes the result with 129x129 grid points obtained by Ghia et al. [8]. The 
velocity profiles near the boundaries are plotted in Fig. 5. The circular, triangular, inverse triangular, 
and square symbols denote the 2nd, 4th, 6th, and 8th order solutions, respectively. In this Reynolds 
number, the higher order solutions than the second order are almost the same. In comparison with the 
Ghia's solution, these higher order velocity profiles are clearly improved. 
      Figures 6, 7, and 8 show the results in Reynolds number Re=5000, that is, the pressure coefficient 
distributions, velocity profiles along the center lines, and velocity profiles near the boundaries. In 
contrast with the previous case, the independent solution of spatial accuracy can not be obtained. 
 
 

 
(a) 2nd order solution        (b) 4th order solution        (c) 6th order solution         (d) 8th order solution

Fig. 6. Pressure coefficient distributions (Re=5000) 

 
 

 

 
 

 Fig. 7.   Velocity profiles along the center lines 
             (Re=5000, 41x41 grid points) 
 
 

 Fig. 8. Velocity profiles near the boundaries 
 

However, as the spatial accuracy becomes higher, 
the primary vortex becomes stronger and the 
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 129

velocity profiles become closer to the Ghia's solution. Especially, the velocity profiles near the 
boundaries are different between the orders of spatial accuracy. These distributions show the tendency 
to converge at the highest order solution. Then, the present higher order wall boundary conditions are 
effective to improve the solutions. 
 
4. Concluding Remarks 
 
In this paper, the higher order wall boundary conditions for incompressible flow simulation are 
presented on the collocated grid system. The validation is performed in the steady square driven cavity 
flow problems, i.e., Re=1000 and 5000 with 41x41 grid points, by using the variable order method of 
lines.  
      In the case of the Reynolds number Re=1000, the independent solution of spatial accuracy can be 
obtained. On the other hand, as the order of spatial accuracy becomes higher, the primary vortex 
becomes stronger and the velocity components near the boundaries are clearly improved in the case of 
the Reynolds number Re=5000.  
       Then, it is concluded that the present higher order wall boundary conditions are more available for 
the incompressible flow simulations. In this paper, the higher order boundary conditions are 
constructed on the collocated grid system, but it is possible to build the almost the same boundary 
conditions on the staggered grid system. Therefore, this idea of higher order boundary conditions is 
very promising for the higher order incompressible flow simulations. 
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